Почему не падают небоскребы

Самый высокий в мире небоскреб Burj Khalifa являет собой пример возведения сверхвысокого здания на сильнодеформируемом основании. Для придания зданию устойчивости были использованы 192 сваи по 1,5 м в поперечнике.

Когда рассказывают об очередном рекордно высоком сооружении, обычно говорят о том, что вздымается над землей. Конечно же, о высоте, количестве этажей и лифтов, смотровых площадках, с которых видно полмира, и о том, например, как доставить воду на сто-какой-нибудь этаж, чтобы водопровод при этом не разорвало от огромного давления в трубах.

Меньше говорят о подземной части, хотя вопрос о том, как гигантские, почти километровые «иглы», вроде построенной Burj Khalifa или строящейся Kingdom Tower, держатся в грунте, весьма интересен. Почему они не падают? Почему не проваливаются в грунт и как выдерживают колоссальные ветровые нагрузки?

Чтобы разобраться в технологии сооружения оснований для небоскребов, «ПМ» обратилась в московский институт «Горпроект», занимающийся, в частности, проектированием высотных зданий. Нашим консультантом любезно согласилась выступить руководитель конструкторского отдела ЗАO «Горпроект», кандидат технических наук Елена Зайцева.

Здесь вам не Манхэттен

«Основным при проектировании фундамента высотного здания является, безусловно, высокая нагрузка, передаваемая сооружением на основание, — говорит Елена Зайцева. — Необходимо различать понятия «фундамент» и «основание здания». Под фундаментом понимают часть здания (нижние конструкции — плита, свайный ростверк, сваи и т. д. ), которая передает нагрузку от сооружения на грунт. И, соответственно, под основанием понимают массив грунта, в котором возникают дополнительные напряжения и осадки в результате воздействия на него здания через его фундамент.

Задача состоит в том, чтобы правильно спроектировать и основание, и фундамент. Основная сложность возникает в связи с тем, что высота здания большая, а площадь передачи нагрузки на основание по отношению к высоте сооружения мала. Это приводит к высоким напряжениям как в самой конструкции фундамента (большие изгибающие моменты и значительная продавливающая нагрузка от стен и колонн), так и в основании (фундамент-грунт)». Читать далее


Таким образом, от характеристик грунта напрямую зависит конструкция фундамента. Известно, что в самом знаменитом парке небоскребов — на острове Манхэттен — скальный грунт находится у поверхности, что значительно облегчает работу проектировщиков. Достаточно расчистить ровную площадку — и на нее можно поставить фундамент в виде толстой плиты из армированного бетона.

Однако в наши дни чемпионат по сверхвысотному строительству происходит в другом уголке мира — на Аравийском полуострове. Именно там стоит самый высокий небоскреб Burj Khalifa (828 м, ОАЭ) и готовится возведение другого монстра высотой в 1007 м — Kingdom Tower (Саудовская Аравия). Последний хотели сделать высотой в милю (1609 м), но геологи сказали решительное «нет» — грунт не выдержит.

Аравия — пустынная земля, сформированная донными отложениями древнего океана, то есть состоящая преимущественно из песчаных пород. Только на глубине встречаются относительно твердые породы типа известкового скалистого грунта. Этот фактор приходилось учитывать чикагскому архитектору Эдриану Смиту, главному творцу аравийских чудес, и другим авторам проектов небоскребов на песке.

Держась за недра

Фундамент Burj Khalifa был разработан как свайно-плитный. Плита толщиной 3,7 м являет собой нечто вроде цветка с тремя лепестками, что отражает общую конструкцию здания, состоящую из центрального шестигранного ядра и трех крыльев, выполняющих роль контрфорсов (вертикальных подпирающих конструкций). Это придает зданию большую жесткость на боковую нагрузку и кручение. Плиту решено было опереть на 192 сваи диаметром 1,5 и длиной 43 м.

Сваи под небоскребы в большинстве случаев являются буронабивными, то есть изготавливаются путем бурения скважин нужных диаметра и глубины и последующего их заполнения элементами арматуры и бетонным раствором.

Иногда сваи пронизывают слои мягкого грунта и достигают на определенной глубине твердой скальной породы, давая твердую опору фундаменту. Но в Аравии даже на глубине 50 м породы мягкие, с низкой степенью цементации. Сваи, подпирающие плиту фундамента, являются по сути «висячими», то есть нагрузка от здания передается верхним слоям грунта через плиту и нижним — в основном через трение поверхностей сваи и грунта. Интересную инженерную проблему пришлось решать при строительстве куала-лумпурских башен-близнецов — Petronas Towers.

Под местом их будущего фундамента присутствовал твердый скальный грунт, но в виде довольно крутого склона. Была возможность выбрать вариант со сваями, опирающимися на скалу, но тогда одни из них были бы совсем короткими, а другие — намного более длинными. Проектировщики опасались, что под весом зданий более длинные сваи со временем сожмутся и их длина существенно сократится, в результате чего возникнет крен. В конце концов было решено перенести строительство туда, где скальный грунт не подходил близко к поверхности, и поставить небоскребы на «висячих сваях».

Бетон отлично работает на сжатие, но не так хорошо — на растяжение и изгиб. «При возведении фундаментов используют железобетон, включающий в себя стальную арматуру и тяжелый бетон, — объясняет Елена Зайцева. — Плиты армируются горизонтальными сетками, воспринимающими изгиб, а нагрузки на сжатие принимает на себя бетон. Диаметр стальной арматуры в плитах достигает 40 мм, но в сваях могут использовать специальную арматуру и большего диаметра».

Таким образом, сверхвысокое здание передает вертикальную нагрузку и изгибающие моменты основанию через плитный или плитно-свайный фундамент. Но как происходит крепление самого здания к фундаменту?

Непрерывная связь

«В настоящее время, если речь идет о высотных зданиях, соединение непосредственно конструкций здания с плитой или ростверком (балкой, распределяющей нагрузку на сваи) выполняется по жесткой схеме, — говорит Елена Зайцева. — Из плиты делаются выпуски арматуры в местах опоры на нее вертикальных конструкций таким образом, чтобы они совпадали с арматурой этих конструкций. Впоследствии при бетонировании стен и колонн арматура плиты и конструкций соединяется, образуя непрерывную связь.

Это позволяет небоскребу иметь надежный «якорь», куда будет передаваться горизонтальная нагрузка, возникающая при порывах ветра или сейсмических толчках, оказывающих сдвигающее воздействие. Что же касается соединения свай с ростверком, то здесь возможно шарнирное соединение, когда арматура сваи не заводится в плиту ростверка, или жесткое — когда не только арматура, но и часть головы сваи заводится в плиту. В первом случае от здания передаются только вертикальные нагрузки на сваи, во втором — также и изгибающий момент».

Если подойти к стройплощадке, на которой только приступают к возведению небоскреба, мы не увидим ни свай, ни плиты. Скорее всего, перед нами будет зиять огромная яма: в любом, даже самом высоком небоскребе проектируются подземные этажи, а потому строительство начинается с рытья котлована.

Чтобы котлован, откосы которого могут составлять 5?10 и более метров, не обвалился, возводятся ограждающие конструкции из шпунтовых свай (обычно они делаются из металла) или в виде «стены в грунте». И лишь в дне котлована будут буриться скважины под буронабивные сваи, а потом там же будет отлита плита, которая станет главной невидимой снаружи опорой небоскреба.

Московская специфика

Одной из особенностей проектирования высотных зданий в Москве можно назвать отсутствие прочных скальных грунтов и местами довольно высокий уровень грунтовых вод.

Грунтовая толща в Москве представлена переслаивающимися слоями песчаных и глинистых грунтов различной консистенции. Это довольно хорошее основание для обычных зданий, однако, учитывая, что давление под подошвой фундамента высотного здания находится в среднем в диапазоне 7?11 кг/см2, этого становится недостаточно.

Правда, в Москве практически повсеместно на доступной глубине (для зданий с большой подземной частью) и при наличии свайного основания залегает слой известняков. На него и стараются опереть фундаменты небоскребов. Однако известняк — это материал, во-первых, существенно менее прочный, чем, например, тот же гранит, и, во-вторых, склонный к разрушению под воздействием кислот.

Учитывая, что продукты жизнедеятельности человека медленно, но верно загрязняют горизонты подземных вод, необходимо иметь это в виду в долговременной перспективе существования небоскреба. Зато нам повезло с отсутствием ураганов и землетрясений частого и катастрофичного характера. Вопросы защиты котлована от подтопления грунтовыми водами в период строительства решаются либо глубинным водопонижением с помощью иглофильтрационных установок, качающих воду с глубин ниже дна котлована, либо созданием водонепроницаемой «стены в грунте», нижний конец которой опускают в глинистый грунт, являющийся водоупором (непропускающим воду).

Защиту подземной части здания от воды выполняют либо с помощью разных систем гидроизоляции, либо применяя так называемую белую ванну: это специальный бетон с пониженной водопроницаемостью, а в местах устройства деформационных и технологических швов устанавливаются эластичные шпонки, которые препятствуют просачиванию воды по швам.

Безусловно, эти работы требуют хорошей квалификации строителей, так как ошибки, допущенные при устройстве подземной части здания, исправить очень трудно и очень дорого.

Статья «Почему не падают небоскребы» опубликована в журнале «Популярная Механика» (№125, март 2013).

По материалам сайта: http://www.popmech.ru