Тепловые насосы — отопление без использования топлива

Содержание

Принцип действия теплового насоса

Самый древний и традиционный способ получения тепла – сжигание топлива – был известен еще древнему человеку с момента, как он открыл для себя огонь. Этот метод и поныне является, чуть ли не единственным вариантом отопления. Причем за всю историю человеческой цивилизации он не претерпел существенных изменений. Расширился лишь ассортимент сжигаемого топлива, а сам процесс стал более совершенным, основанным на новейших разработках в этой области. В последнее время наука закономерно занялась вопросом, как получить отопление без топлива,и какие альтернативные источники обогрева можно использовать.

Связано это с тем, что данный тип получения тепла влечет за собой ряд проблем, которые отодвигаются на второй план на фоне неуклонного подорожания существующих источников тепловой энергии. В первую очередь, это разрушительное воздействие на экологию и, как следствие, на здоровье человека. А также возрастание потенциальной опасности экологической катастрофы мирового масштаба, когда существование людей на планете станет невозможным.

Второй момент заключается в том, что запасы используемого топлива рано или поздно закончатся. Эти две причины и вынудили ученых искать альтернативные варианты обогрева. Одним из результатов подобных изысканий, получившим уже мировое практическое применение, стало появление тепловых насосов.

Устройство и принцип действия

Работа любого устройства основана на использовании законов физики. Так и принцип действия теплового насоса базируется на свойствах газов и жидкостей, а также на принципах термодинамики этих сред. При испарении – переходе жидкости в газообразное состояние – энергия, или тепло поглощается. При конденсации – переходе газообразных веществ в жидкое состояние – наоборот, выделяется. Наиболее интенсивно процесс испарения происходит при температуре кипения и близкой к этой отметке. В нормальных условиях вода закипает при 100 0 С.

Однако есть вещества, закипающие при гораздо более низких температурах. Например, небезызвестный фреон начинает кипеть при +3 0 С, что значительно ниже комнатной температуры. Это значит, что при +3 0 С он превращается из жидкости в газ, который легко подвергнуть сжатию (проще, чем жидкость) – то есть увеличить его давление в замкнутой системе, что, согласно законам термодинамики, приведет к росту температуры.


Сжать газообразный фреон теоретически можно до получения любой высокой температуры. На практике же больший интерес представляет нагрев до значений традиционных систем отопления, например до +80 0 С, что вполне возможно. На использовании этих важных процессов и свойств построена работа тепловых насосов.

В земной толще на определенной глубине температура всегда постоянна, независимо от времени года и других обстоятельств, и равна +8 0 С. Проложенные в этих слоях коллекторы из труб с циркулирующей по ним незамерзающей жидкостью забирают тепло земли. Через теплообменник эта жидкость нагревает фреон, перемещающийся по контуру теплового насоса.

При температуре +8 0 С фреон, естественно, трансформируется в газообразное состояние. Этот газ сжимают компрессором для нагревания до температуры 80 0 С. Он отдает это тепло системе отопления через другой теплообменник и с гораздо меньшей температурой, но с прежним высоким давлением поступает в дроссель, где его давление резко снижают. Вследствие этого температура также быстро понижается до значений перехода фреона обратно в жидкое состояние. Он снова отправляется в теплообменник для получения тепла земли, замыкая тем самым цикл.

В данном случае земля является так называемым источником температуры низкого уровня. К ним также относятся вода водоемов, подземные воды и даже воздух, так как у всех них своя определенная температура. Общеизвестно, что примерно 70% поверхности земли занято водой, что означает наличие у человека колоссальных запасов тепловой энергии, подаренных природой. Назначение насоса — преобразование теплоты этих источников в тепло высокого уровня — 70–80 0 С.

Теорию применяемого в тепловом насосе процесса впервые описал французский ученый Карно в 1824 г. Процесс  назвали «цикл Карно». В 1852  г. британец Уильям Томсон, основываясь на этой теории, разработал первый тепловой насос, получивший известность как «умножитель тепла». А в 1855 г. австрийский инженер Петер Риттер фон Риттингер спроектировал первый тепловой насос и испытал его.

С этой технологией мы ежедневно сталкиваемся в повседневной жизни, так как она используется в ставших обычными для нас холодильниках. В испарителе – холодильной камере этого устройства — забирается тепло продуктов, и они охлаждаются. Хладагент (фреон) переносит и рассеивает полученное тепло через радиатор в атмосферу. Потребляемая холодильником электроэнергия расходуется только на перемещение фреона по системе с помощью компрессора.

Типы тепловых насосов

Геотермальный тепловой насос

Источниками низкоуровневого тепла могут быть:

  • вода любых наземных водоемов
  • подземные воды
  • земля
  • воздух

Исходя из этого, а также учитывая вид теплоносителя в системе отопления помещений, определяют тип насоса. Когда источником является земля, а обогрев производится водяной отопительной системой, то тип насоса классифицируют как «грунт-вода».

По материалам сайта: http://gidotopleniya.ru