Системы водяного отопления – принцип работы

Среди жизнеобеспечивающих инженерных систем современных жилых и производственных зданий системы водяного отопления занимают особое положение. Они отличаются по конструктивным особенностям их исполнения, архитектурно-строительным требованиям размещения и эксплуатации, технологическим признакам.  Кроме этого, они должны отвечать и определенным санитарно-гигиеническим требованиям. Все вместе они формируют конкретные, специфические требования к устройству, эксплуатации и содержанию отопительных систем и устройств.

Системы водяного отопления – классификация

Системы водяного отопления современных зданий классифицируют по следующим признакам.

1. По институциональным признакам:

  • по назначению: для гражданских объектов (жилых и общественных зданий); производственных (промышленных, сельскохозяйственных); специального назначения (транспортных средств, военных и др. объектов);
  • по формам собственности: государственная, коллективная, частная;
  • по способу обслуживания: коммунальное обслуживание, самообслуживание, смешанное обслуживание.

2. По технологическим требованиям:

  • соответствие требованиям термодинамики;
  • нормам надежности и безопасности устройства и функционирования.

3. По требованиям архитектурно-строительных норм, правил и

стандартов:

  • по методам тепловых и гидравлических расчетов;
  • по конструктивным признакам: по способу циркуляции теплоносителя (естественная и принудительная циркуляция); по месту размещения разводки (верхняя и нижняя разводящая магистраль); по способу подводки разводки к отопительным стоякам (с тупиковым или с попутным движением воды, коллекторные); по конструктивным особенностям стояков и схеме монтажа к ним отопительных приборов (однотрубные и двухтрубные системы, вертикальные, горизонтальные); по типу используемых трубопроводов (металлические, неметаллические); по виду теплоносителей (вода, антифризы);
  • по мощности и типу теплогенераторов и источников теплоты, способу присоединения: местные теплогенераторы на углеродном топливе и электричестве (котлы квартирные, домовые, крышные, блочные) мощностью до 3,0 МВт; централизованные источники теплоты (подающие ее в системы отопления от АЭС, ТЭЦ, КЭС, РТС, КТС через тепловые сети и местные или центральные тепловые пункты) мощностью свыше 3,0 МВт; теплогенераторы на нетрадиционных (возобновляемых) источниках теплоты; по гидравлической связи с централизованным источником теплоты (непосредственное присоединение, гидравлически изолированное); по способу присоединения систем отопления в тепловом пункте (4 варианта основных схем);
  • по способу автоматизации и учета потребленной теплоты
  • по определенным санитарно-гигиеническим требованиям.

Основные элементы и технологические особенности водяных систем отопления

Главной принципиальной технологической особенностью водяных систем отопления. в отличие от однопоточных (однотрубных) систем водопровода, газоснабжения и водоотведения, является то, что в соответствии с законами термодинамики системы водяного отопления могут быть циркуляционными, двухпоточными, двухтрубными.


К основным элементам системы отопления относятся: теплогенератор (котел отопления), теплоноситель (вода или антифриз), подающие и обратные магистрали трубопроводов, циркуляционный насос (если система с принудительной циркуляцией теплоносителя), группа безопасности, расширительный бак и отопительные приборы (радиаторы).

Системы отопления – принцип работы

Принцип работы системы отопления сводится к тому, что нагретый в теплогенераторе (отопительном котле) теплоноситель насосом подается к отопительным приборам здания по подающим трубопроводам с температурой t1  ?С. В топительных приборах происходит отдача теплоты и охлаждение теплоносителя, и соответственно понижение его температурного потенциала (теплосодержание). Охлажденный до температуры t2, °C, он поступает в обратные трубопроводы, по которым снова возвращается в исходное положение – в теплогенератор для последующего нагрева.

Таким образом, в системах отопления постоянно совершаются тепловые циклы – круговорот теплоносителя в количестве G, кг/ч, и выполняется полезная работа системы по отоплению помещения на температурном перепаде t1 – t2, °C, теплотой в количестве Q, Дж/ч.

Как известно, каждый теплоноситель обладает своей теплоемкостью с, Дж/(кг -°С). Вода имеет теплоемкость с = 4,19 кДж/(кг -°С), это означает, что для нагрева 1 кг воды на 1 °С необходимо затратить 4,19 кДж теплоты. Зная величины G, t1, t2, с, можно определить количество теплоты Qnp, отданное теплоносителем в приборах отопления обогреваемых помещение за один час или за какой-то период времени z, ч, по формулам:

Qпр = G -с (t1 – t2), Дж/ч                                                               (1)

Qпр = G -с (t1 -t2) -z, Дж.                                                               (2)

При этом, для поддержания постоянной температуры воздуха внутри помещения tпомп = Const, это количество теплоты Qпр должно соответствовать потерям теплоты помещением (зданием) – Qпом. равной сумме тепловых потерь через наружные ограждающие конструкции помещения (наружные стены, двери и окна, полы и потолки), называемые трансмиссионными – Qтрансм. и расходам теплоты на подогрев поступающего наружного вентиляционного воздуха – Qвент. а в производственных зданиях, кроме этого, и на нагрев технологических материалов и изделий – Qтехн. ввозимых с улицы.

Должен соблюдаться тепловой баланс:

Qпом  =Qпр  =  Qтрансм  + Qвент + Отехн,   Дж/ч                         (3)

В последние годы стали учитывать также и внутренние теплопоступления – тепловыделения: от находящихся в помещениях людей, от бытовых электрических и варочных приборов, от технологических аппаратов, от готовой продукции и изделий, от солнечной радиации и др. Эти тепловыделения Qтвн. Дж/ч, уменьшают потребность помещения (здания) в теплоте, которую оно должно получить от системы отопления. Тепловой баланс помещения с учетом внутренних тепловыделений будет выглядеть следующим образом:

Для эффективного заполнения системы водяного отопления теплоносителем (обычно водой) и удерживания циркуляционного кольца в заполненном состоянии, а также для опорожнения системы необходимо наличие еще  трех обязательных элементов – подпиточного устройства (насоса), устройства спуска и расширительного бака.

С помощью устройства подпитки вся система, включающая источник теплоснабжения, циркуляционный насос, подающие и обратные магистрали трубопроводов (подача и обратка), все расположенные в помещении приборы отопления, а также расширительный бак, медленно (через обратную линию) заполняются теплоносителем (водой). В процессе заполнения или подпитке системы теплоноситель вытесняет воздух из внутренних полостей трубопроводов и отопительных приборов вверх, в расширительный бак или в специальные, так называемые воздушники. В некоторых П-образных системах отопления воздушники (краны Маевского) устанавливают в верхних заглушках отопительных приборов.

Если воздух из системы не удалось полностью удалить, то образуются воздушные пробки, которые разрывают поток теплоносителя в трубопроводах и приборах отопления и препятствующие циркуляции его в системе. Нередко встречаются случаи аварийного выхода из строя систем из-за нарушения режима циркуляции (перегрева теплоносителя из-за воздушных пробок). Для эффективного воздухоудаления подающие магистрали трубопроводов устанавливают с небольшим уклоном (i = 0,010) в направлении от главного стояка в сторону приборов отопления, а трубопроводы выполняющие обратную подачу – с тем же уклоном от приборов отопления в сторону источника отопления (теплогенератора) к спускному крану.

При нагреве теплоносителя из него в виде пузырьков выделяются растворенные в холодной воде газы – кислород, азот и углекислый газ, которые таким же образом (через расширительный бак или воздушники) удаляются из системы при эксплуатации ее.

Прокладка разводящих трубопроводов с уклоном позволяет также быстро удалять теплоноситель в случаях опорожнения их для ремонтных целей, предотвращает «зависание» теплоносителя в трубах.

Расширительный бак объемом V (м3) монтируется в самой верхней точке системы (как правило это чердачное помещение), и обязательно утепляется. Он является своеобразным буфером системы отопления, и своим объемом позволяет компенсировать изменение объема циркулирующего теплоносителя – увеличения при нагреве и уменьшения при охлаждении, а также возмещать небольшую потерю его за счет испарения и возможных утечек через неплотности системы. Оборудованный сигнальной и переливной трубами открытый расширительный бак позволяет персоналу периодически контролировать заполненность системы теплоносителем (водой), наполнять и пополнять ее подпиточным устройством при необходимости.

В небольших домовых и коттеджных системах отопления такие наполнения и подпитку ведут из питьевого водопровода, открывая кран на линии подпитки. При отсутствии водопровода ее осуществляют либо с помощью электрического, либо ручного насоса, присоединяемого к промежуточной, периодически пополняемой водой при закачке емкости. В системах водяного отопления крупных многоэтажных зданий для этих целей устанавливают специальные подпиточные насосы и подпитку ведут специально подготовленной умягченной и деаэрированной водой для предотвращения коррозии и зарастания металлических трубопроводов.

В самой нижней точке системы отопления на обратной магистрали трубопровода (обратке) устанавливается спускной кран, при помощи которого осуществляют спуск теплоносителя (воды) из системы, в случаях проведения ремонтных работ или отключения на длительный срок во избежание замораживания в зимний период. Чтобы избежать «зависания» теплоносителя в трубопроводных магистралях и отопительных приборах при спуске следует открывать воздушники установленные в верхних точках системы.

Циркуляционный насос системы отопления устанавливается, как правило, на трубопроводе выполняющем обратную подачу (обратка) перед источником отопления (теплогенератором). В крупных разветвленных системах отопления зданий обычно устанавливают несколько (2-3) циркуляционных насоса (один резервный).

Все упомянутые обязательные элементы систем водяного отопления – теплогенератор, циркуляционный насос, отопительные приборы, расширительный бак, воздушники и подпиточное устройство, приборы КИПиА соединяются между собой трубопроводами в определенной последовательности и порядке, образуя сложную гидравлическую циркуляционную систему – систему замкнутых сообщающихся между собой сосудов и колец, заполненных теплоносителем.

  • Отопление частного дома
  • Расширительный бак
  • Циркуляционный насос

По материалам сайта: http://inbud.ru