Тезисы выступления на открытии конференции

Фасад здания - это не только элемент архитектуры, но и фактор, обеспечивающий тепловую защиту дома. Существующие нормы строительной теплотехники требуют применения 3-х стекольных окон (или 2-х стекольных со специальным селективным покрытием стекла) и многослойных стен. Как известно, в панельном домостроении московская стройиндустрия перешла на производство трехслойных железобетонных панелей с внутренним утеплением из пенополистирола, удовлетворяющих требованиям 2-го этапа энергосбережения по СНиП II-3-79* .

Однослойная конструкция наружной стены сохраняется только при использовании полистиролбетона плотностью 250-350 кг/м 3. Как показали расчеты ВНИИ железобетона, при выполнении надоконных перемычек из того же полистиролбетона, но большей плотности, толщина несущих стен для климатических условий центра России может быть 300-400 мм.

Толщина стен, выполняемых из газо- или пенобстонных блоков должна быть в зависимости от их плотности не менее 600 мм, что находится за рамками разумного, и, как правило, такие блоки применяются меньшей толщины, но с дополнительным слоем утеплителя, подобно стенам из кирпича или монолитного железобетона.

В качестве утеплителя наиболее часто используют минераловатные маты из базальтового волокна на синтетическом связующем или пенополистирольные плиты. Наружный покровный слой включает цементнопесчаную штукатурку по сетке, стенку из керамического лицевого кирпича, реже вентилируемые фасады с Креплением облицовочных панелей на металлическом каркасе.

Основными ошибками при проектировании утепления фасадов являются:
  • Применение в проектах новых утеплителей российского производства или ввозимых из-за границы, не имеющих сертификатов соответствия.
  • Отсутствие в протоколах теплотехнических испытаний к сертификатам соответствия расчетных коэффициентов теплопроводности в условиях эксплуатации и зоны влажности территории, на которой осуществляется строительство. Для Москвы это параметр Б. Например, в протоколе теплотехнических испытаний к сертификату соответствия, выданном Санкт-Петербургским центром сертификации, со сроком действия 1998-2001 г. на стеклянное штапельное волокно, выпускаемое фирмой "Isover", Финляндия, дана теплопроводность материала только в сухом состоянии, что не может быть использовано для теплотехнических расчетов объектов, строящихся н Москве. А проектные организации активно этот материал применяют в проектах. В Московском территориальном строительном каталоге МТСК-3 приводятся также показатели теплопроводности материалов в сухом состоянии, что дезориентирует проектировщиков.
  • Использование рекламной продукции. Из-за отсутствия в проектных организациях сертификатов соответствия с протоколом теплотехнических испытаний при проектировании используются рекламные проспекты, в которых указывается наличие сертификата и его номер, а показатель теплопроводности материала указывается улучшенным. Например, для утепления наружных стен с коэффициентом теплопроводности по параметру Б требуется толщина утеплителя 150 мм, в проекте принята теплопроводность утеплителя по рекламе, и предусматривается утеплитель толщиной 130 мм. Это приводит к улучшенным показателям теплозащитных свойств наружных ограждающих конструкций только в проектах и снижению или отсутствию экономии тепла в эксплуатации.
  • Можно ли применять новые утеплители для утепления фасадов различных конструкций? Это указывается только в Техническом свидетельстве Госстроя РФ на выполнение работ по утеплению фасадов той фирмы, которая эти работы будет выполнять. У проектировщиков этих документов, как правило, нет, т.к. в Москве много проектов идет на тендер, и кто будет выполнять эти работы - ни проектная организация, ни заказчик не знают. Федеральный центр сертификации Госстроя РФ в журнале "Бюллетень строительной техники" N7 за 2000 г. поместил очень полезную информацию об области применения минеральной ваты различных фирм-изготовителей для строительных целей, в том числе и для утепления фасадов. Целесообразно продолжить и ускорить такую работу по группе стеклянного штапельного волокна и экструзионных пенополистиролов.

    Выпущенный в 2001 году Госстроем РФ Свод правил, "Проектирование тепловой защиты зданий" СП-23-101-2000, частично перечисленные проблемы решает, но в нем нет информации об области применения помещенных в нем материалов.
  • Не учитываются теплопроводные включения в конструкции наружных стен металлические связи при облицовке фасадов кирпичом, наличие колонн железобетонного или металлического каркаса в наружных стенах зданий, наличие узлов опирания наружных стен на железобетонные плиты перекрытия, наличие оконных и дверных откосов и др. Наружные стены из пено- и газобетонных блоков должны рассчитываться с учетом толщины цементно-песчаного раствора, на котором они укладываются. Для сведения - Мосгосэкспертиза выпускает Информационные бюллетени, где проводятся методические и информационные материалы, в том числе и по методикам расчета теплозащиты зданий.
  • Особое внимание следует обратить на фасады реконструируемых зданий. Во-первых, фасады зданий, построенных 30-40 лет назад (это в основном 9-12-зтажные здания второго и третьего поколения панельного домостроения), не соответствуют современным архитектурным требованиям и во-вторых, они нуждаются в дополнительном утеплении стен и замене окон, чтобы резко снизить теплопотери существующих зданий.

    Исходя из требований норм СНиП II-3-79*. необходимо на стены укладывать изоляцию толщиной 10-12 см, а в качестве покровного слоя применять штукатурку из цементно-песчаного раствора по металлической сетке или по аналогии с новым строительством - вентилируемые фасады с отделкой облицовочными панелями. Первое решение дешевле, но недолговечно, и из-за наличия "мокрых" процессов выполнять такие работы можно только при положительной наружной температуре. Второе решение дороже, но лишено недостатков первого.


    Один из завершенных опытов реконструкции фасадов существующего 9-этажного 4-секционного жилого дома типовой серии 1-515-9М выполнен в Москве на Хабаровской ул. д. 24. На фасадах были заменены окна на теплозащитные с низкой воздухопроницаемостью - однокамерный стеклопакет с заполнением аргоном и низкоэмиссионным покрытием внутреннего стекла, застеклены балконы и произведено утепление стен - керамзитобетонных панелей толщиной 400 мм 10-сантиметровым слоем минеральной ваты из базальтового волокна на синтетическом связующем и по металлическому каркасу с воздушным зазором навешены декоративные панели "Марморок".

    Стоимость утепления стен по исполнительным сметам составила 1900 руб. на один м 2 поверхности стены (за вычетом площади окон) или 1250 руб. на один м 2 общей площади квартир. Мероприятие это приводит к сокращению расхода тепла на 55 кВт·ч/м 2 за отопительный период или при стоимости 0,24 руб. за кВт·ч - 13 руб на один м 2 общей площади квартир.

    Стоимость замены окон составила 1000 руб. на один м 2 общей площади квартир. Остекление балконов, не дающее энергетического эффекта и выполненное из архитектурных соображений, а также чтобы не вступать в споры с жильцами, у которых балконы уже были застеклены, и приходилось нарушать это остекление для возможности монтажа фасадного утепления - еще 630 руб/м 2.

    Все это говорит об очень больших затратах на реконструкцию фасадов, и, в условиях ограниченности средств на капитальный ремонт в нашей стране и больших процентах на кредит, о разумных сроках окупаемости говорить не приходится.

    В связи с этим интересен пример возвращения из долгостроя 25-этажного жилого дома по Сумскому пр. к-с 1 в Москве. Он был начат строительством до внесения изменений в строительные нормы с фасадными стенами из керамзитобетонных панелей. При достройке здания были установлены современные теплозащитные окна, выполнено утепление кровли в соответствии с требованиями норм, применено эффективное авторегулирование системы отопления, но утепление стен решили не делать, т.к. это казалось неподъемным.

    Однако сопротивление теплопередаче существующих стен оказалось более чем в 1,5 раза ниже требуемого по санитарно-гигиеническим и комфортным условиям, что могло стать причиной появления конденсата на внутренней поверхности наружных стен и образования плесени. В то же время расчеты показали, что если выполнить теплоизоляцию наружных стен 3-сантиметровым слоем минваты или пенополистирола, а это не требует дорогостоящего каркаса, то приведенное сопротивление теплопередаче такой стены не только станет выше минимально допустимого, но по удельному расходу тепла на отопление за отопительный период проект здания будет соответствовать требованиям энергоэффективности московских территориальных норм МГСН 2.01-99. и ожидаемое снижение теплопотребления зданием составит 30% по сравнению с решением без утепления фасадных стен.

    В конце концов, доведение сопротивления теплопередаче стен до рекомендуемого СНиП не является самоцелью. Важно снизить количество тепла на отопление, а это может быть достигнуто не только повышением теплозащиты наружных ограждений, но и применением оптимальных объемно-планировочных решений (например, увеличение на 2 м ширины здания со стандартных для типовых проектов 11-11,5 м приводит к сокращению удельного теплопотребления на 20%), эффективной системы автоматического регулирования подачи тепла на отопление, утилизации тепла вытяжного воздуха для нагрева приточного, тепловых насосов и др.

    Московские нормы МГСН 2.01-99 допускают снижение сопротивления теплопередаче непрозрачных наружных ограждений при условии соответствия нормам удельного расхода тепла на отопление здания за отопительный период, и что стимулирует реализацию перечисленных выше энергосберегающих мероприятий. Здания, сооружаемые в Москве, начиная с 2000 г. имеют показатель удельного расхода тепла на отопление 110-130 кВт·ч/м 2 общей площади квартир для этажности в 9-5 этажей и 95-80 кВт·ч/м 2 для большей этажности. Это соответствует германским требованиям о тепловой защите 1995 г. - 59-85 кВт·ч/м 2. что в пересчете с числа градусо-суток Германии (3500) на российские условия составит 85-120 кВт·ч/м 2.

    И это достигается при обязательном применении автоматического регулирования подачи тепла на отопление на вводе в здание и термостатов на отопительных приборах, современных теплозащитных и герметичных окон и наружных стен с приведенным сопротивлением теплопередаче около 3 м 2 ·°C/Вт для типовых многосекционных жилых зданий или 1,5-2 м 2 ·°C/Вт для ширококорпусных зданий. В последнем примере 3-сантиметровая теплоизоляция керамзитобетонных панелей позволила увеличить сопротивление теплопередаче стены с 0,81 до 1,35 м 2 ·°C/Вт и снизить удельный расход тепла на отопление с 110 до 77 м 2 ·°C/Вт (при норме по СНиП II-3-79* не выше 95 кВт·ч/м 2 ).

    В этом - ответ на дискуссию, развернувшуюся на страницах "Строительного эксперта" в NN 10, 11 и 20 о целесообразности перехода на 2-ой этап энергосбережения: необходимо принципы потребительского подхода при выборе теплозащиты зданий, изложенные в МГСН 2.01-99. перенести и в СНиП II-3-79* "Строительная теплотехника" .

    • Грамотное решение для красивого фасада: дом известного телеведущего Антона Привольнова
    • Элвис не покинет здание
    • Многоликие заборы
    • Экономичные решения для вентфасадов
    • Настала осень – снимаемся с якоря
    • Универсальная панель
    • Экономичные решения для вентфасадов
    • Строим бизнес-центр: дёшево, но не сердито
    • Виниловый сайдинг – преимущества, история создания
    • Лофт: искусство жизни и архитектуры
    • Модульные поликарбонатные системы: новый этап в строительстве светопрозрачных конструкций
    • Сэндвич-панели для спортивных сооружений: быстро, выгодно, удобно
    • Стены против вандалов
    • Гипсовые 3D панели для стен
    • Облицовка вентилируемых фасадов и крепление облицовки
    • Декоративный искусственный камень
    • Ловись фасад большой, ловись маленький
    • Доска позора
    • Эволюция фасада
    • Инновационные сэндвич-панели для промышленных холодильников
    • Производство сэндвич-панелей с пенополиуретаном
    • Сэндвич-панели: выбирая из трех вариантов
    • Современное строительство для сельского хозяйства
    • Кровля и фасады должны выполняться в комплексе
    • Ограждающие конструкции для промышленности: время новых решений
    • Сэндвич-панели покоряют мир
    • Сам себе дизайнер… полов
    • H+H: спрос на газобетон в малоэтажном строительстве растет
    • H+H активизирует внедрение технологии строительства сборно-монолитных перекрытий из газобетона
    • Цвет практичности не помеха
    • Самый оригинальный фасад
    • Сэндвич-панели: быстро, просто, доступно
    • Современные решения для индустриального строительства
    • Как выбрать навесной фасад
    • Герметичный дом
    • Дёшево – не значит сердито
    • Фиброцементные материалы Eternit
    • МОДНЫЕ ФАСАДЫ
    • Сэндвич-панели для промышленности
    • Почему владельцы домов в России выбирают виниловый сайдинг
    • Сайдинг — материал для обшивки домов
    • Новый материал для облицовки фасадов – ГИБКАЯ КЕРАМИКА
    • С фасадами «ОЛМА» строительный сезон круглый год
    • ЯРКИЕ ФАСАДЫ
    • Вентилируемые фасады с отделкой керамогранитными плитами
    • Радиусные фасады – элемент архитектуры будущего
    • Эстетика стыка
    • Металлический сайдинг – цена
    • Надёжность начинается с фасада
    • Осторожно – «протухшие» сэндвичи!
    • Олимпийский Сочи: замысел, архитектура, технологии
    • Актуальные вопросы монтажа навесных вентилируемых фасадов
    • Фасадные конструкции ИЗОБУД
    • Блок хаус – эволюция сайдинга!
    • Этапы монтажа вентилируемого фасада
    • Вентилируемые фасады
    • Что такое высолы и как с ними бороться
    • Лекарство для фасадов.
    • Система материалов для структурного остекления фасадов.
    • Виды армирования кирпичной кладки
    • Быстровозводимые малоэтажные жилые здания с применением легких стальных тонкостенных конструкций.
    • О продольной фильтрации воздуха в теплоизоляционном слое навесных вентилируемых фасадов.
    • Керамзитобетон: НЕ гниет, НЕ горит и НЕ ржавеет!
    • Выцветы на поверхности бетонных изделий и методы их предотвращения.

    По материалам сайта: http://www.know-house.ru