Простой стабилизатор для солнечной панели
Стабилизаторы для солнечных батарей весьма разнообразны. Самый простой тип стабилизатора – шунтовой. Он имеет следующие преимущества: простота, низкая рассеиваемая мощность, низкая стоимость, высокая надежность. Но в обмен на эти преимущества приходится мириться с тем, что напряжение на батарее постоянно изменяется, то вверх, то вниз, что аккумулятор переключается, то в режим зарядки полным током, то в состояние отсутствия зарядного тока, и, что постоянные переключения приводят к импульсным помехам на выходе стабилизатора. В зависимости от назначения, необходимо выбрать наиболее подходящий тип стабилизатора. В большинстве солнечных установок я использовал линейные стабилизаторы, который имеют преимущества плавного регулирования напряжения и крайне небольших выбросов напряжения на нагрузке. Правда, они имеют и существенные недостатки: более высокую стоимость, большие размеры и высокую рассеиваемую мощность. Но когда меня попросили сделать солнечный стабилизатор для яхты, который обслуживает только одну солнечную панель на 3.1 ампера, и подключается к аккумуляторной батарее на 300 A·ч, лучше было использовать маленькое и простое устройство, чем линейный стабилизатор. Так что я спроектировал и изготовил именно такой стабилизатор. Вы также можете применить его для таких случаев, когда мощность солнечных батарей довольно мала в сочетании с относительно большой емкостью аккумулятора, или когда низкая стоимость, простота конструкции и высокая надежность являются более важными, чем стабильность линейного регулирования.
Стабилизатор был собран на макетной плате и смонтирован в герметичном пластмассовом корпусе, который, в свою очередь, был установлен на алюминиевой монтажной пластине. Клеммы изготовлены из латуни. Такая конструкция устройства использована, чтобы противостоять суровой морской среде и небрежному обращению.
Если солнечная панель не генерирует энергию, вся схема отключена и не потребляет от аккумулятора абсолютно никакого тока. Когда солнце встает, и панель начинает выдавать не менее 10 В, включаются индикаторный светодиод и два маломощных транзистора. Устройство начинает работать. Пока напряжение батареи остается ниже 14 В, операционный усилитель (он имеет очень низкое потребление тока) будет держать MOSFET транзистор закрытым, так что ничего особенного не случится, и ток от солнечной панели будет проходить через диод Шоттки на батарею.
Когда напряжение батареи достигнет значения, равного 14.0 В, операционный усилитель U1 откроет MOSFET транзистор. Транзистор будет шунтировать солнечную панель (для нее это совершенно безопасно), аккумулятор перестанет получать ток заряда, индикатор погаснет, два маломощных транзистора закроются, и конденсатор С2 медленно разрядится. После истечения примерно 3 секунд, конденсатор С2 разрядится достаточно, чтобы преодолеть гистерезис микросхемы U1, которая снова закроет MOSFET транзистор. Теперь схема снова будет заряжать аккумулятор, пока его напряжение вновь не достигнет уровня переключения. Таким образом, устройство работает циклично, каждый период включения полевого транзистора длится 3 секунды, а каждый из периодов заряда аккумулятора длится столько, сколько необходимо для достижения напряжения 14.0 В. Длительность этого периода будет меняться в зависимости от зарядного тока аккумулятора и мощности подключенной к нему нагрузки.
Минимальное время включения схемы определяется временем заряда конденсатора С2 током, ограниченным транзистором Q3 примерно до 40 мА. Эти импульсы могут быть очень короткими.
- Современная механизированная штукатурка в Москве позволяет существенно ускорить процесс отделки стен и потолков в строительных проектах.
- С помощью современных механизированных систем штукатурки возможно достичь высокой точности и качества отделки, сократив при этом затраты на ручной труд и материалы.
- Механизированная штукатурка в Москве используется как в жилищном строительстве, так и в коммерческих проектах, позволяя создать эффективное решение для любого проекта отделки.
Конструкция схемы очень проста. Все компоненты довольно доступны, и большинство из них могут быть легко заменены другими сходными компонентами. Я бы не советовал заменять TLC271 или LM385-2.5. если вы не уверены в правильности замены. Обе эти микросхемы – маломощные приборы, и их потребление непосредственно определяет время выключения стабилизатора. Если вы используете микросхемы, которые имеют другое энергопотребление, необходимо изменить емкость конденсатора С2, подобрать смещение транзистора Q3, но может, даже это не поможет правильно настроить схему.
MOSFET транзистор может быть заменен любым другим с достаточно низким сопротивлением открытого канала, чтобы оно позволяло эффективно шунтировать солнечную панель. Диод D2 также может быть любым, способным выдержать максимальный ток солнечной панели. Применение диода Шоттки предпочтительнее, потому что на нем будет падать вдвое меньшее напряжение, чем на стандартном кремниевом, и такой диод будет в два раза меньше греться. Стандартный диод подходит, если правильно размещен и смонтирован. С приведенными на схеме компонентами стабилизатор может работать с солнечными панелями с током до 4 А. Для более крупных панелей необходимо заменить лишь MOSFET транзистор и диод более мощными. Остальные компоненты схемы останутся прежними. Радиатор для управления 4 А панелью не требуется. Но если поставить MOSFET на подходящий теплоотвод, схема сможет работать с существенно более мощной панелью.
Резистор R8 в этой схеме равен 92 кОм, что является нестандартным значением. Я предлагаю, чтобы вы использовали включенные последовательно резисторы 82 кОм и 10 кОм, это проще, чем пытаться найти специальный резистор. Резисторы R8, R10 и R6 определяют напряжение отсечки, так что лучше, если они будут точными. Я использовал 5% резисторы, но если Вы хотите повысить надежность устройства, используйте 1% резисторы или выберите наиболее точные из 5% с помощью цифрового омметра. Вы можете также использовать подстроечный резистор, и таким образом, регулировать напряжение, но я бы не советовал этого делать, если Вы хотите получить высокую надежность в агрессивной среде. Подстроечные резисторы просто выходят из строя в таких условиях.
Перевод: Андрей Гаврилюк по заказу РадиоЛоцман
Хотите получать уведомления о выходе новых материалов на сайте?
Подпишитесь на рассылку!
По материалам сайта: http://www.rlocman.ru