• Современная механизированная штукатурка в Москве позволяет существенно ускорить процесс отделки стен и потолков в строительных проектах.
  • С помощью современных механизированных систем штукатурки возможно достичь высокой точности и качества отделки, сократив при этом затраты на ручной труд и материалы.
  • Механизированная штукатурка в Москве используется как в жилищном строительстве, так и в коммерческих проектах, позволяя создать эффективное решение для любого проекта отделки.
    • Отопление дома. Схема отопления дома с тепловым насосом

      В данной статье описаны варианты отопления дома и горячего водоснабжения с помощью теплового насоса, солнечного коллектора и кавитационного теплогенератора. Дана приближенная методика расчета теплового насоса и теплогенератора. Приведены примерная стоимость затрат для обогрева дома с помощью теплового насоса.

      Что такое тепловой насос

      Чтобы понять его принцип действия можно посмотреть на обычный бытовой холодильник или кондиционер.

      Современные тепловые насосы используют для своей работы низкопотенциальные источники тепла землю, грунтовые воды, воздух. И в холодильнике и в тепловом насосе действует один и тот же физический принцип (физики называют такой процесс циклом Карно ).«Тепловой насос» - устройство, которое «выкачивает» тепло из холодильной камеры и выбрасывает его на радиатор. Кондиционер «выкачивает» тепло из воздуха комнаты и выбрасывает ее на радиатор, но находящийся на улице. При этом к теплу, «высосанному» из комнаты, добавляется ещё тепло, в которое превратилась электрическая энергия, потреблённая электродвигателем кондиционера.

      Число, выражающее отношение вырабатываемой тепловым насосом (кондиционером или холодильником) тепловой энергии к потребляемой им электрической энергии, специалисты по тепловым насосам называют «отопительным коэффициентом». В лучших тепловых насосах отопительный коэффициент достигает 3 - 4. То есть на каждый потреблённый электродвигателем киловатт-час электроэнергии вырабатывается 3-4 киловатт-часа тепловой энергии. (Один киловатт-час соответствует 860 килокалориям.) Этот коэффициент преобразования (отопительный коэффициент) напрямую зависит от температуры источника тепла, чем выше температура источника, тем больше коэффициент преобразования.

      Кондиционер берёт эту тепловую энергию из воздуха улицы, а большие тепловые насосы «выкачивают» это дополнительное тепло обычно из водоема/подземных вод или грунта.

      Хотя температура этих источников гораздо меньше, чем температура воздуха в обогреваемом доме, но и это низкотемпературное тепло грунта или воды, тепловой насос и превращает в высокотемпературное. необходимое для обогрева дома. Поэтому тепловые насосы называют ещё «трансформаторами тепла». (процесс превращения см. ниже)

      Примечание. Тепловые насосы не только согревают дома, но и остужают воду в реке, из которой выкачивают тепло. А в наше время, когда реки слишком перегреты промышленными и бытовыми стоками, охлаждать реку очень полезно для жизни в ней живых организмов и рыбы. Чем ниже температура воды, тем больше в ней может раствориться кислорода, необходимого для рыбы. В тёплой воде рыба задыхается, а в холодной блаженствует.Поэтому тепловые насосы очень перспективны в деле спасения окружающей среды от " теплового загрязнения ".


      • Современная механизированная штукатурка в Москве позволяет существенно ускорить процесс отделки стен и потолков в строительных проектах.
      • С помощью современных механизированных систем штукатурки возможно достичь высокой точности и качества отделки, сократив при этом затраты на ручной труд и материалы.
      • Механизированная штукатурка в Москве используется как в жилищном строительстве, так и в коммерческих проектах, позволяя создать эффективное решение для любого проекта отделки.
        • Но установка системы отопления с помощью тепловых насосов пока слишком дорога, потому что требуются большое количество земляных работ плюс расходных материалов, например, труб для создания коллектора/теплообменника.

          Так же стоит помнить что в тепловых насосах, как и в обычных холодильниках, используется компрессор, сжимающий рабочее тело - аммиак или фреон. На фреоне тепловые насосы работают лучше, но фреон уже запрещён к применению из-за того, что он, попадая в атмосферу, выжигает в её верхних слоях озон, защищающий Землю от ультрафиолетовых лучей Солнца.

          И все-таки мне кажется, что будущее за тепловыми насосами. Но их, никто пока не производит массово. Почему? Не трудно догадаться.

          Если появляется альтернативный источник дешевой энергии, то куда девать добываемый газ, нефть и уголь, кому его продавать. А на что списывать многомиллиардные убытки от взрывов на шахтах и рудниках.

          На рис.1 представлена принципиальная схема обогрева дома с помощью теплового насоса

          1. Тепловой насос
          2. Трубопровод, уложенный в земле
          3. Бойлер косвенного нагрева
          4. Система отопления «теплый пол»
          5. Контур подачи горячей воды

          Принципиальная схема обогрева дома с помощью теплового насоса

          Принцип действия теплового насоса

          В качестве источника низкопотенциального тепла может выступать наружный воздух, имеющий температуру от –15 до +15 °С, воздух отводимый из помещения с температурой 15–25 °С, подпочвенные (4–10 °С) и грунтовые (более 10 °C) воды, озерная и речная вода (0–10 °С), поверхностный (0–10 °С) и глубинный (более 20 м) грунт (10 °С). В Нидерландах, например, в городе Херлен (Heerlen) для этих целей используется затопленная шахта. Вода, наполняющая старую шахту, на уровне 700 метров имеет постоянную температуру в 32 °C.

          В случае использования в качестве источника тепла атмосферного или вентиляционного воздуха, система отопления работает по схеме «воздух–вода». Насос может быть расположен внутри или снаружи помещения. Воздух подается в его теплообменник с помощью вентилятора.

          Если в качестве источника тепла используются грунтовые воды, то система работает по схеме «вода–вода». Вода подается из скважины с помощью насоса в теплообменник насоса, а после отбора тепла, сбрасывается либо в другую скважину, либо в водоем. В качестве промежуточного теплоносителя можно использовать антифриз или тосол. Если в качестве источника энергии выступает водоем, на его дно укладывается петля из металлопластиковой или пластиковой трубы. По трубопроводу циркулирует раствор гликоля (антифриз) или тосола который через теплообменник теплового насоса передает тепло фреону.

          При использовании в качестве источника тепла грунта, система работает по схеме «грунт-вода». Возможны два варианта устройства коллектора – вертикальный и горизонтальный.

          • При горизонтальном расположении коллектора, металлопластиковых трубы укладывают в траншеи глубиной 1,2–1,5 м или в виде спиралей в траншеи глубиной 2–4 м. Такой способ укладки позволяет значительно уменьшить длину траншей.

          Схема теплового насоса при горизонтальном коллекторе со спиральной укладкой труб

          1. Тепловой насос
          2. Трубопровод, уложенный в земле
          3. Бойлер косвенного нагрева
          4. Система отопления «теплый пол»
          5. Контур подачи горячей воды
          Однако при укладке спиралью сильно увеличивается гидродинамическое сопротивление, что приводит к дополнительным затратам на прокачку теплоносителя, так же сопротивление увеличивается по мере увеличения длины труб.
        • При вертикальном расположении коллектора трубы укладывают в вертикальные скважины на глубину 20–100 м.

        Схема вертикального зонда

        Фото зонда в бухте

        Установка зонда в скважину

        Расчет горизонтального коллектора теплового насоса

        Расчет горизонтального коллектора теплового насоса.

        q – удельный теплосъем (с 1 м пог. трубы).

        • сухой песок – 10 Вт/м,
        • сухая глина – 20 Вт/м,
        • влажная глина – 25 Вт/м,
        • глина с большим содержанием воды – 35 Вт/м

        Между прямой и обратной петлей коллектора появляется разность температур теплоносителя.

        Обычно для расчета ее принимают равной 3 °С. Недостатком такой схемы является то, что на участке над коллектором не желательно возводить строений, чтобы тепло земли пополнялось за счет солнечной радиации. Оптимальная дистанция между трубами считается 0,7–0,8 м. При этом длина одной траншеи выбирается от 30 до 120 м.

        Пример расчета теплового насоса

        Я приведу примерный расчет теплового насоса для нашего экодома, описанного в статье "Экодом. Теплоснабжение экодома."

        Считается, что для обогрева дома с высотой потолка 3м, необходимо расходовать 1 кВт. Тепловой энергии на 10 кв.м площади. При площади дома 10х10м=100 кв.м, необходимо 10кВт тепловой энергии.

        При использовании теплого пола, температура теплоносителя в системе. должна быть 35 °С, а минимальная температура теплоносителя – 0 °С.

        Я привожу данные теплового насоса Thermia Villa

        Таблица 1. Характеристики теплового насоса Thermia Villa

        Для обогрева здания нужно выбирать тепловой насос мощностью 15,6 кВт (ближайший больший типоразмер), расходующий на работу компрессора 5 кВт. Выбираем по типу грунта теплосъем с поверхностного слоя грунта. Для (влажной глины) q равняется 25 Вт/м.

        Рассчитаем мощность теплового коллектора

        Qo = Qwp – P,

        Где

        Qo – мощность теплового коллектора. кВт;

        Qwp – мощность теплового насоса. кВт;

        P – электрическая мощность компрессора. кВт.

        Требуемая тепловая мощность коллектора составит

        где

        q – удельный (с 1 м.пог трубы) теплосъем, кВт/м.

        L= 10,6/0,025 = 424 м

        Для организации такого коллектора потребуется 5 контуров длиной по 100 м. Исходя из этого, определим необходимую площадь участка для укладки контура.

        A = L х da,

        где

        da – расстояние между трубами (шаг укладки), м.

        При шаге укладки 0,75 м необходимая площадь участка составит

        А = 500 х 0,75 = 375 м2

        Расчет вертикального коллектора

        При выборе вертикального коллектора, бурят скважины глубиной от 20 до 100 м. В них погружаются U-образные металлопластиковые или пластиковые трубы. Для этого в одну скважину вставляется две петли, которые заливается цементным раствором.

        Удельный теплосъем такого коллектора составляет 50 Вт/м. Для более точных расчетов применяют следующие данные:

        • сухие осадочные породы – 20 Вт/м;
        • каменистая почва и насыщенные водой осадочные породы – 50 Вт/м;
        • каменные породы с высокой теплопроводностью – 70 Вт/м;
        • подземные воды – 80 Вт/м.

        На глубинах более 15 м, температура грунта составляет примерно +10 °С. Необходимо учитывать, что расстояние между скважинами должно быть больше 5 м. Если в грунте существуют подземные течения, то скважины необходимо бурить перпендикулярной потоку.

        Пример расчета теплового насоса

        L = Qo/q = 10,6/0,05 = 212 м

        Таким образом, при удельном теплосъеме вертикального коллектора 50 Вт/м и требуемой мощности 10,6 кВт длина трубы L должна составить 212м.

        Для устройства коллектора необходимо пробурить три скважины глубиной по 75 м. В каждой из них размещаем по две петли из металлопластиковой трубы всего – 6 контуров по 150 м.

        Работа теплового насоса при работе по схеме «Грунт-вода»

        Трубопровод укладывается в землю. При прокачивании через него теплоносителя, последний нагревается до температуры грунта. Дальше по схеме вода поступает в теплообменник теплового насоса и отдает все тепло во внутренний контур теплового насоса.

        Во внутренний контур теплонасоса закачан хладагент под давлением. В качестве хладагента используется фреон или его заменители, поскольку фреон разрушает озоновый слой атмосферы и запрещен к использованию в новых разработках. У хладагента низкая температура кипения и поэтому когда в испарителе резко снижается давление, он переходит из жидкого состояния в газ при низкой температуре.

        После испарителя газообразный хладагент поступает в компрессор и сжимается компрессором. При этом он разогревается, и давление его повышается. Горячий хладагент поступает в конденсатор, где протекает теплообмен между ним и теплоносителем из обратного трубопровода. Отдавая свое тепло, хладагент охлаждается и переходит в жидкое состояние. Теплоноситель поступает в отопительную систему и снова охлаждаясь, передает свое тепло в помещение. Когда хладагент проходит через редукционный клапан ,его давление падает, и он снова переходит в жидкую фазу. После этого цикл повторяется.

        В холодное время года теплонасос работает как обогреватель, а в жаркое время может использоваться для охлаждения помещения (при этом тепловой насос не подогревает, а охлаждает теплоноситель - воду. А охлажденная вода, в свою очередь может использоваться для охлаждения воздуха в помещении).

        В общем случае, теплонасос представляет собой машину Карно, работающую в обратном направлении. Холодильник перекачивает тепло из охлаждаемого объема в окружающий воздух. Если поместить холодильник на улице, то, извлекая тепло из наружного воздуха и передавая его вовнутрь дома, то можно таким нехитрым способом, в какой-то степени, обогревать помещение.

        Однако, как показывает практика, одного лишь теплового насоса для снабжения дома теплом и горячей водой недостаточно. Осмелюсь предложить оптимальную, на мой взгляд, схему отопления и горячего водоснабжения дома.

        Рисунок 2 – Предлагаемая схема снабжения дома теплом и горячей водой

        1. Теплогенератор
        2. Солнечный коллектор
        3. Бойлер косвенного нагрева
        4. Тепловой насос
        5. Трубопровод в земле
        6. Циркуляционный блок гелиосистемы
        7. Радиатор отопления
        8. Контур подачи горячей воды
        9. Система отопления «теплый пол»

        Данная схема предполагает одновременное использование трех источников тепла. Основную роль играет в ней теплогенератор (1), Тепловой насос (4) и солнечный коллектор (2), которые служат вспомогательными элементами и способствуют снижению затрат потребляемой электроэнергии, как следствие, и повышению эффективности нагрева. Одновременное использование трех источников нагрева практически полностью исключает опасность размерзания системы .

        Ведь вероятность выхода из строя одновременно и теплогенератора, и теплового насоса, и солнечного коллектора ничтожно мала. На схеме показаны два варианта обогрева помещений: радиаторы (7) и «теплый пол» (9). Это не значит, что надо использовать оба варианта, а лишь иллюстрирует возможность использования и одного и второго.

        Принцип работы схемы отопления.

        Теплогенератор (1) подает нагретую воду в бойлер (3) и контур, состоящий из радиаторов отопления (7). Также в бойлер поступает нагретый теплоноситель от теплового насоса (4) и солнечного коллектора (2). Часть нагретой тепловым насосом воды также подается на вход теплогенератора. Смешиваясь с «обраткой» обогревающего контура, она повышает ее температуру. Это способствует более эффективному нагреву воды в кавитаторе теплогенератора. Нагретая и накопленная в бойлере вода подается в контур системы «теплый пол» (9) и контур подачи горячей воды (8).

        Конечно, эффективность данной схемы будет неодинаковой в различных широтах. Ведь солнечный коллектор будет иметь наибольшую эффективность в летнее время года и, конечно же, в солнечную погоду. В наших широтах летом отапливать жилые помещения нет необходимости, поэтому теплогенератор можно вообще отключить. А так как лето у нас довольно жаркое и мы уже с трудом представляем свой быт без кондиционера, то тепловой насос предполагается включить на режим охлаждения. Естественно трубопровод, идущий от теплового насоса к бойлеру, будет перекрыт. Таким образом решать задачу горячего водоснабжения предполагается только с помощью гелиосистемы. И лишь в случае, если гелиосистема не справляется с этой задачей, использовать теплогенератор.

        Как видим, схема довольно сложная и дорогостоящая.

        Общие приблизительные затраты в зависимости от выбранной схемы приведены ниже

        Для вертикального коллектора:

        • Тепловой насос 6000 €
        • Буровые работы 6000 €
        • Эксплуатационные расходы (электричество): около 400 € в год.

        Для горизонтального коллектора:

        • Тепловой насос 6000 €
        • Буровые работы 3000 €
        • Эксплуатационные расходы (электричество): около 450 евро в год

        Из крупных затрат потребуются расходы на закупку труб и на оплату труда рабочих.

        Установка плоского солнечного коллектора (например, Vitosol 100-F и водонагревателя 300л) обойдется в 3200 €

        Поэтому давайте, пойдем от простого к сложному. Сначала соберем простую схему отопления дома на основе теплогенератора, отладим ее, и постепенно будем добавлять в неё новые элементы, позволяющие увеличивать КПД установки.

        Соберем систему отопления по схеме, представленной на рис.3.

        Рисунок 3 – Схема теплоснабжения дома с использованием теплогенератора

        1. Теплогенератор
        2. Бойлер косвенного нагрева
        3. Система отопления «теплый пол»
        4. Контур подачи горячей воды

        В итоге мы получили простейшую схему теплоснабжения дома, Я поделился своими мыслями для того, что бы побудить инициативных людей к развитию альтернативных источников энергии. Если у кого-то возникнут идеи или возражения по поводу написанного выше, давайте делиться мыслями, давайте накапливать знания и опыт в данном вопросе, и мы сбережем нашу экологию и сделаем жизнь немножко лучше.

        Как видим здесь основной и единственный элемент, нагревающий теплоноситель, – это теплогенератор. Хотя в схеме и предусмотрен лишь один источник нагрева, она предусматривает возможность дальнейшего добавления дополнительных нагревательных устройств. Для этого предполагается использование бойлера косвенного нагрева с возможностью добавления или извлечения теплообменников.

        Использование радиаторов отопления, имеющихся в схеме, изображенной на рис. 2, не предполагается. Как известно система «теплый пол» более эффективно справляется с задачей обогрева помещений и позволяет экономить затрачиваемую энергию.

        По материалам сайта: http://www.ventil-otoplenie.com

  • Современная механизированная штукатурка в Москве позволяет существенно ускорить процесс отделки стен и потолков в строительных проектах.
  • С помощью современных механизированных систем штукатурки возможно достичь высокой точности и качества отделки, сократив при этом затраты на ручной труд и материалы.
  • Механизированная штукатурка в Москве используется как в жилищном строительстве, так и в коммерческих проектах, позволяя создать эффективное решение для любого проекта отделки.