• Современная механизированная штукатурка в Москве позволяет существенно ускорить процесс отделки стен и потолков в строительных проектах.
  • С помощью современных механизированных систем штукатурки возможно достичь высокой точности и качества отделки, сократив при этом затраты на ручной труд и материалы.
  • Механизированная штукатурка в Москве используется как в жилищном строительстве, так и в коммерческих проектах, позволяя создать эффективное решение для любого проекта отделки.
    • Зарядка литиевых аккумуляторов схема

      Зарядка литиевых аккумуляторов своими руками схема на LM317

      Процесс заряда показан на графике. В первоночальный момент зарядный ток постоянен, при достижении уровня напряжения Umax на аккумуляторе, ЗУ переходит в режим, когда напряжение будет постоянным, а ток асимптотически стремится к нулю.

      Зарядка литиевых аккумуляторов график процесса

      Выходное напряжение литиевых аккумуляторов, обычно, составляет 4,2В, а номинальное напряжение составляет порядка 3,7В. Не рекомендуется заряжать эти батареи до полных 4,2В, так как это снижает их срок службы. Если снизить выходное напряжение до 4,1В, емкость упадет почти на 10%, но в тоже время количество циклов заряд-разряд возрастет почти в два раза. При эксплуатации этих батарей, крайне нежелательно доводить номинальное напряжение ниже уровня 3,4…3,3В.

      Зарядка литиевых аккумуляторов схема на LM317


      • Современная механизированная штукатурка в Москве позволяет существенно ускорить процесс отделки стен и потолков в строительных проектах.
      • С помощью современных механизированных систем штукатурки возможно достичь высокой точности и качества отделки, сократив при этом затраты на ручной труд и материалы.
      • Механизированная штукатурка в Москве используется как в жилищном строительстве, так и в коммерческих проектах, позволяя создать эффективное решение для любого проекта отделки.
        • Как видим схема достаточно простая. Построена на стабилизаторах LM317 и TL431. Еще из радиокомпонентов присутствуют пару диодов, сопротивлений и конденсаторов. Устройство почти не требует регулировки, достаточно подстроечным сопротивлением R8 задаем напряжение на выходе устройства на номинале 4,2 вольта без подключенного аккумулятора. Сопротивлениями R4 и R6 устанавливаем зарядной ток. Для индикации работы конструкции предназначен светодиод "заряд", который при подключенной пустой батареи горит, а по мере зарядки он тухнет.

          Приступаем к сборке конструкции для зарядки литиевых аккумуляторов. Находим подходящий корпус в нем можно разместить простой трансформаторный блок питания на пять вольт, и выше рассмотренную схему.

          Для подключения заряжаемой батареи вырезал две латунные полоски и установил их на гнезда. Гайкой настраивается расстояние между контактами, которые подключаются к заряжаемой батареи.

          Сделал, что-то вроде прищепки. Можно также установить переключатель, для смены полярности на гнездах зарядного устройства - в некоторых случаях это может сильно выручить.

          Зарядка литиевых аккумуляторов своими руками с функцией защиты

          При огромной массе положительных характеристик имеется у литиевых батарей и существенные недостатки, такие как высокая чувствительность к превышению напряжения заряда, что может повлечь за собой нагрев и интенсивное газообразование. А так как батарея имеет герметичную конструкцию, избыточное выделение газа привидеть к вздутию или взрыву. Кроме того литиевые батареи терпеть не могут перезаряд.

          Благодаря использованию специализированных микросхем в фирменных зарядках, которые контролируют напряжение, такая проблема многим пользователям не знакома, но это не значит, что ее не существует. Поэтому для зарядки литиевых аккумуляторов нам нужно именно такое устройство, а схема рассмотренная выше является лишь его прототипом.

          Зарядка литиевых аккумуляторов схема универсальная

          Устройство позволяет заряжать литиевые батареи с напряжением 3,6В или 3,7В. На первом этапе заряд осуществляется стабильным током 245мА или 490мА (устанавливается вручную), при увеличении напряжения на батареи до уровня 4,1В или 4,2В заряд продолжается при поддержании стабильного напряжения и уменьшающемся значении зарядного тока, как только последний упадет до порогового значения (задается вручную от 20мА до 350мА) заряд батареи автоматически прекращается.

          Стабилизатор LM317 поддерживает напряжение на сопротивлении R9 на уровне около 1,25В тем самым поддерживая стабильное значение тока идущего через него, а значит и через заряжаемый аккумулятор. Выходное напряжение ограничивается стабилизатором TL431, подключенного к управляющему входу LM317. Значение напряжения ограничения выбирается с помощью делителя на сопротивлениях R12…R14. Сопротивление R11 ограничивает ток питания TL431.

          На операционном усилителе DA2.2 LM358, сопротивлениях R5…R8 и биполярном транзисторе VT2 построен преобразователь ток-напряжение. Напряжение на его выходе пропорционально току, протекающему через сопротивление R9 и вычисляется по формуле:

          При значениях, на схеме коэффициент преобразования тока в напряжение равен 10, т.е. при токе через сопротивление R9 245мА напряжение на R5 равно 2,45В.

          С R5 напряжение следует на неинвертирующий вход ОУ DA2.1. На инвертирующий вход компаратора поступает напряжение с регулируемого делителя на сопротивлениях R2…R4. Напряжение питания делителя стабилизируется LM78L05. Порог переключения компаратора устанавливается номиналом переменного сопротивления R3.

          Зарядка литиевых аккумуляторов настройка схемы.

          Вместо тумблера SB1 поставить перемычку и подав напряжение на схему, подбором сопротивлений R12…R14 сделать выходное напряжение 4,1В и 4,2В для разомкнутого и замкнутого состояния тумблера SA2.

          Тумблером SA1 устанавливаем значение тока заряда (245мА или 490мА). Тумблером SA2 выбираем максимальное значение напряжения, для аккумуляторов на 3,6В выбираем 4,1В, на 3,7В - 4,2В. Движком переменного сопротивления R3 задаем значение тока, при котором должен завершиться заряд батареи (ориентировочно 0,07…0,1С), подсоединяем аккумулятор и нажимаем тумблер SB1. Должен стартовать процесс заряда литиевой батареи и загорается индикатор на светодиоде VD2. При уменьшении тока заряда ниже порогового высокий уровень на выходе DA2.1 поменяется на низкий, полевой транзистор VT1 закрывается и катушка реле K1 отключается, разрывая своим фронтовым контактом K1 батарею от зарядного устройства.

          Привожу рисунок печатной платы зарядного устройство и рекомендую ее изготовить своими руками по технологии ЛУТ

          Для возможности заряда литиевых аккумуляторов от мобильных телефонов и смартфонов был сделан универсальный адаптер:

          Правила эксплуатации литиевых батарей

          Все аккумуляторы этого типа необходимо эксплуатировать в соответствии с определенными рекомендациями. Эти правила можно условно поделить на две группы: Не зависящие и зависящие от пользователя.

          В первую группу попадают основополагающие правила заряда и разряда аккумуляторных батарей, которые контролируются специальным контроллером зарядного устройства:

          Литиевый аккумулятор должен находиться в состоянии, при котором его напряжение не должно быть более 4.2 вольта и не опускаться ниже 2.7 вольта. Эти пределы являются уровнями максимального и минимального заряда. Минимальный уровень в 2,7 вольта актуален для батарей с электродами из кокса, однако современные литиевые аккумуляторы изготавливаются с электродами из графита. Для них минимальный предел равен 3 вольтам.

          Количество энергии, отдаваемой батареей при изменении заряда от 100% до 0%, - это емкость аккумулятора. Ряд производителей ограничивает максимальное напряжение уровнем в 4.1 вольта, при этом литиевая батарея прослужит гораздо больше, но потеряет в емкости где-то на 10%. Иногда нижний предел повышается до 3.0 и даже 3.3 вольт, но также с снижением уровня емкости.

          Наибольший срок эксплуатаии аккумуляторов бывает при 45% зхаряде, а при увеличении или уменьшении срок жизни сокращается. Если заряд находится в указанном выше диапазоне изменение срока эксплуатации не значительно.

          Если напряжение на аккумуляторе выходит за пределы, указанные выше, даже на короткое время, срок его эксплуатации резко падает.

          Контроллеры аккумуляторов зарядных устройств никогда не дают напряжению на аккумуляторе во время заряда стать выше 4.2 вольта, но могут по-разному ограничивать минимальный уровень при разряде.

          Ко второй группе зависящих от пользователя входят следующие правила:

          Старайтесь не разряжать аккумулятор до минимального уровня заряда и, тем более, до состояния, когда устройство само отключается, ну, а если это произошло, то желательно зарядить батарею как можно быстрее.

          Не бойтесь частых подзарядок, в том числе и неполных литиевому аккумулятору это совершенно пофигу.

          Емкость аккумулятора зависит от температуры. Так, при 100% уровне заряда при комнатной температуре, при выходе на мороз заряженность батареи упадет до 80%, что в принципе не опасно и не критично. Но может быть и наоборот если 100% заряженный аккумулятор положить на батарею, его уровень заряда увеличится до 110%, а это для него очень опасно и может резко сократить срок его жизни.

          Идеальным условием для длительного хранения аккумулятора является нахождение вне девайса с зарядом около 50%

          Если после приобретения батареи повышенной ёмкости через несколько дней эксплуатации. Устройство с батареей начинает глючить и виснуть или отключается зарядка аккумулятора, то скорей всего ваше зарядное устройство, которое отлично работало на старом аккумуляторе, просто не способно обеспечить необходимый ток зарядки для большой емкости.

          По материалам сайта: http://www.texnic.ru

  • Современная механизированная штукатурка в Москве позволяет существенно ускорить процесс отделки стен и потолков в строительных проектах.
  • С помощью современных механизированных систем штукатурки возможно достичь высокой точности и качества отделки, сократив при этом затраты на ручной труд и материалы.
  • Механизированная штукатурка в Москве используется как в жилищном строительстве, так и в коммерческих проектах, позволяя создать эффективное решение для любого проекта отделки.